nheko/third_party/blurhash/blurhash.cpp

495 lines
15 KiB
C++

#include "blurhash.hpp"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <numbers>
#include <stdexcept>
#ifdef DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#if __has_include(<doctest.h>)
#include <doctest.h>
#else
#include <doctest/doctest.h>
#endif
#endif
using namespace std::literals;
namespace {
constexpr std::array<char, 84> int_to_b83{
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz#$%*+,-.:;=?@[]^_{|}~"};
std::string
leftPad(std::string str, size_t len)
{
if (str.size() >= len)
return str;
return str.insert(0, len - str.size(), '0');
}
constexpr std::array<int, 255> b83_to_int = []() constexpr
{
std::array<int, 255> a{};
for (auto &e : a)
e = -1;
for (int i = 0; i < 83; i++) {
a[static_cast<unsigned char>(int_to_b83[i])] = i;
}
return a;
}
();
std::string
encode83(int value)
{
std::string buffer;
do {
buffer += int_to_b83[value % 83];
} while ((value = value / 83));
std::reverse(buffer.begin(), buffer.end());
return buffer;
}
struct Components
{
int x, y;
};
int
packComponents(const Components &c) noexcept
{
return (c.x - 1) + (c.y - 1) * 9;
}
Components
unpackComponents(int c) noexcept
{
return {c % 9 + 1, c / 9 + 1};
}
int
decode83(std::string_view value)
{
int temp = 0;
for (char c : value)
if (b83_to_int[static_cast<unsigned char>(c)] < 0)
throw std::invalid_argument("invalid character in blurhash");
for (char c : value)
temp = temp * 83 + b83_to_int[static_cast<unsigned char>(c)];
return temp;
}
float
decodeMaxAC(int quantizedMaxAC) noexcept
{
return static_cast<float>(quantizedMaxAC + 1) / 166.f;
}
float
decodeMaxAC(std::string_view maxAC)
{
assert(maxAC.size() == 1);
return decodeMaxAC(decode83(maxAC));
}
int
encodeMaxAC(float maxAC) noexcept
{
return std::max(0, std::min(82, int(maxAC * 166 - 0.5f)));
}
float
srgbToLinear(int value) noexcept
{
auto srgbToLinearF = [](float x) {
if (x <= 0.0f)
return 0.0f;
else if (x >= 1.0f)
return 1.0f;
else if (x < 0.04045f)
return x / 12.92f;
else
return std::pow((x + 0.055f) / 1.055f, 2.4f);
};
return srgbToLinearF(static_cast<float>(value) / 255.f);
}
int
linearToSrgb(float value) noexcept
{
auto linearToSrgbF = [](float x) -> float {
if (x <= 0.0f)
return 0.0f;
else if (x >= 1.0f)
return 1.0f;
else if (x < 0.0031308f)
return x * 12.92f;
else
return std::pow(x, 1.0f / 2.4f) * 1.055f - 0.055f;
};
return int(linearToSrgbF(value) * 255.f + 0.5f);
}
struct Color
{
float r, g, b;
Color &operator*=(float scale)
{
r *= scale;
g *= scale;
b *= scale;
return *this;
}
friend Color operator*(Color lhs, float rhs) { return (lhs *= rhs); }
Color &operator/=(float scale)
{
r /= scale;
g /= scale;
b /= scale;
return *this;
}
Color &operator+=(const Color &rhs)
{
r += rhs.r;
g += rhs.g;
b += rhs.b;
return *this;
}
};
Color
decodeDC(int value)
{
const int intR = value >> 16;
const int intG = (value >> 8) & 255;
const int intB = value & 255;
return {srgbToLinear(intR), srgbToLinear(intG), srgbToLinear(intB)};
}
Color
decodeDC(std::string_view value)
{
assert(value.size() == 4);
return decodeDC(decode83(value));
}
int
encodeDC(const Color &c)
{
return (linearToSrgb(c.r) << 16) + (linearToSrgb(c.g) << 8) + linearToSrgb(c.b);
}
float
signPow(float value, float exp)
{
return std::copysign(std::pow(std::abs(value), exp), value);
}
int
encodeAC(const Color &c, float maximumValue)
{
auto quantR =
int(std::max(0., std::min(18., std::floor(signPow(c.r / maximumValue, 0.5) * 9 + 9.5))));
auto quantG =
int(std::max(0., std::min(18., std::floor(signPow(c.g / maximumValue, 0.5) * 9 + 9.5))));
auto quantB =
int(std::max(0., std::min(18., std::floor(signPow(c.b / maximumValue, 0.5) * 9 + 9.5))));
return quantR * 19 * 19 + quantG * 19 + quantB;
}
Color
decodeAC(int value, float maximumValue)
{
auto quantR = value / (19 * 19);
auto quantG = (value / 19) % 19;
auto quantB = value % 19;
return {signPow((float(quantR) - 9) / 9, 2) * maximumValue,
signPow((float(quantG) - 9) / 9, 2) * maximumValue,
signPow((float(quantB) - 9) / 9, 2) * maximumValue};
}
Color
decodeAC(std::string_view value, float maximumValue)
{
return decodeAC(decode83(value), maximumValue);
}
std::vector<float>
bases_for(size_t dimension, size_t components)
{
std::vector<float> bases(dimension * components, 0.f);
auto scale = std::numbers::pi_v<float> / float(dimension);
for (size_t x = 0; x < dimension; x++) {
for (size_t nx = 0; nx < size_t(components); nx++) {
bases[x * components + nx] = std::cos(scale * float(nx * x));
}
}
return bases;
}
}
namespace blurhash {
Image
decode(std::string_view blurhash, size_t width, size_t height, size_t bytesPerPixel) noexcept
{
Image i{};
if (blurhash.size() < 10)
return i;
Components components{};
std::vector<Color> values;
values.reserve(blurhash.size() / 2);
try {
components = unpackComponents(decode83(blurhash.substr(0, 1)));
if (components.x < 1 || components.y < 1 ||
blurhash.size() != size_t(1 + 1 + 4 + (components.x * components.y - 1) * 2))
return {};
auto maxAC = decodeMaxAC(blurhash.substr(1, 1));
Color average = decodeDC(blurhash.substr(2, 4));
values.push_back(average);
for (size_t c = 6; c < blurhash.size(); c += 2)
values.push_back(decodeAC(blurhash.substr(c, 2), maxAC));
} catch (std::invalid_argument &) {
return {};
}
i.image = decltype(i.image)(height * width * bytesPerPixel, 255);
std::vector<float> basis_x = bases_for(width, components.x);
std::vector<float> basis_y = bases_for(height, components.y);
for (size_t y = 0; y < height; y++) {
for (size_t x = 0; x < width; x++) {
Color c{};
for (size_t nx = 0; nx < size_t(components.x); nx++) {
for (size_t ny = 0; ny < size_t(components.y); ny++) {
float basis = basis_x[x * components.x + nx] *
basis_y[y * components.y + ny];
c += values[nx + ny * components.x] * basis;
}
}
i.image[(y * width + x) * bytesPerPixel + 0] =
static_cast<unsigned char>(linearToSrgb(c.r));
i.image[(y * width + x) * bytesPerPixel + 1] =
static_cast<unsigned char>(linearToSrgb(c.g));
i.image[(y * width + x) * bytesPerPixel + 2] =
static_cast<unsigned char>(linearToSrgb(c.b));
}
}
i.height = height;
i.width = width;
return i;
}
std::string
encode(unsigned char *image, size_t width, size_t height, int components_x, int components_y)
{
if (width < 1 || height < 1 || components_x < 1 || components_x > 9 || components_y < 1 ||
components_y > 9 || !image)
return "";
std::vector<float> basis_x = bases_for(width, components_x);
std::vector<float> basis_y = bases_for(height, components_y);
std::vector<Color> factors(components_x * components_y, Color{});
for (size_t y = 0; y < height; y++) {
for (size_t x = 0; x < width; x++) {
Color linear{srgbToLinear(image[3 * x + 0 + y * width * 3]),
srgbToLinear(image[3 * x + 1 + y * width * 3]),
srgbToLinear(image[3 * x + 2 + y * width * 3])};
// other half of normalization.
linear *= 1.f / static_cast<float>(width);
for (size_t ny = 0; ny < size_t(components_y); ny++) {
for (size_t nx = 0; nx < size_t(components_x); nx++) {
float basis = basis_x[x * size_t(components_x) + nx] *
basis_y[y * size_t(components_y) + ny];
factors[ny * components_x + nx] += linear * basis;
}
}
}
}
// scale by normalization. Half the scaling is done in the previous loop to prevent going
// too far outside the float range.
for (size_t i = 0; i < factors.size(); i++) {
float normalisation = (i == 0) ? 1 : 2;
float scale = normalisation / static_cast<float>(height);
factors[i] *= scale;
}
assert(factors.size() > 0);
auto dc = factors.front();
factors.erase(factors.begin());
std::string h;
h += leftPad(encode83(packComponents({components_x, components_y})), 1);
float maximumValue;
if (!factors.empty()) {
float actualMaximumValue = 0;
for (auto ac : factors) {
actualMaximumValue = std::max({
std::abs(ac.r),
std::abs(ac.g),
std::abs(ac.b),
actualMaximumValue,
});
}
int quantisedMaximumValue = encodeMaxAC(actualMaximumValue);
maximumValue = ((float)quantisedMaximumValue + 1) / 166;
h += leftPad(encode83(quantisedMaximumValue), 1);
} else {
maximumValue = 1;
h += leftPad(encode83(0), 1);
}
h += leftPad(encode83(encodeDC(dc)), 4);
for (auto ac : factors)
h += leftPad(encode83(encodeAC(ac, maximumValue)), 2);
return h;
}
}
#ifdef DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
TEST_CASE("component packing")
{
for (int i = 0; i < 9 * 9; i++)
CHECK(packComponents(unpackComponents(i)) == i);
}
TEST_CASE("encode83")
{
CHECK(encode83(0) == "0");
CHECK(encode83(packComponents({4, 3})) == "L");
CHECK(encode83(packComponents({4, 4})) == "U");
CHECK(encode83(packComponents({8, 4})) == "Y");
CHECK(encode83(packComponents({2, 1})) == "1");
}
TEST_CASE("decode83")
{
CHECK(packComponents({4, 3}) == decode83("L"));
CHECK(packComponents({4, 4}) == decode83("U"));
CHECK(packComponents({8, 4}) == decode83("Y"));
CHECK(packComponents({2, 1}) == decode83("1"));
}
TEST_CASE("maxAC")
{
for (int i = 0; i < 83; i++)
CHECK(encodeMaxAC(decodeMaxAC(i)) == i);
CHECK(std::abs(decodeMaxAC("l"sv) - 0.289157f) < 0.00001f);
}
TEST_CASE("DC")
{
CHECK(encode83(encodeDC(decodeDC("MF%n"))) == "MF%n"sv);
CHECK(encode83(encodeDC(decodeDC("HV6n"))) == "HV6n"sv);
CHECK(encode83(encodeDC(decodeDC("F5]+"))) == "F5]+"sv);
CHECK(encode83(encodeDC(decodeDC("Pj0^"))) == "Pj0^"sv);
CHECK(encode83(encodeDC(decodeDC("O2?U"))) == "O2?U"sv);
}
TEST_CASE("AC")
{
auto h = "00%#MwS|WCWEM{R*bbWBbH"sv;
for (size_t i = 0; i < h.size(); i += 2) {
auto s = h.substr(i, 2);
const auto maxAC = 0.289157f;
CHECK(leftPad(encode83(encodeAC(decodeAC(decode83(s), maxAC), maxAC)), 2) == s);
}
}
TEST_CASE("decode")
{
blurhash::Image i1 = blurhash::decode("LEHV6nWB2yk8pyoJadR*.7kCMdnj", 360, 200);
CHECK(i1.width == 360);
CHECK(i1.height == 200);
CHECK(i1.image.size() == i1.height * i1.width * 3);
CHECK(i1.image[0] == 135);
CHECK(i1.image[1] == 164);
CHECK(i1.image[2] == 177);
CHECK(i1.image[10000] == 173);
CHECK(i1.image[10001] == 176);
CHECK(i1.image[10002] == 163);
// stbi_write_bmp("test.bmp", i1.width, i1.height, 3, (void *)i1.image.data());
i1 = blurhash::decode("LGF5]+Yk^6#M@-5c,1J5@[or[Q6.", 360, 200);
CHECK(i1.width == 360);
CHECK(i1.height == 200);
CHECK(i1.image.size() == i1.height * i1.width * 3);
// stbi_write_bmp("test2.bmp", i1.width, i1.height, 3, (void *)i1.image.data());
// invalid inputs
i1 = blurhash::decode(" LGF5]+Yk^6#M@-5c,1J5@[or[Q6.", 360, 200);
CHECK(i1.width == 0);
CHECK(i1.height == 0);
CHECK(i1.image.size() == 0);
i1 = blurhash::decode(" LGF5]+Yk^6#M@-5c,1J5@[or[Q6.", 360, 200);
CHECK(i1.width == 0);
CHECK(i1.height == 0);
CHECK(i1.image.size() == 0);
i1 = blurhash::decode("LGF5]+Yk^6# M@-5c,1J5@[or[Q6.", 360, 200);
CHECK(i1.width == 0);
CHECK(i1.height == 0);
CHECK(i1.image.size() == 0);
i1 = blurhash::decode("LGF5]+Yk^6# M@-5c,1J5@[or[Q6.", 360, 200);
CHECK(i1.width == 0);
CHECK(i1.height == 0);
CHECK(i1.image.size() == 0);
i1 = blurhash::decode("LGF5]+Yk^6# @-5c,1J5@[or[Q6.", 360, 200);
CHECK(i1.width == 0);
CHECK(i1.height == 0);
CHECK(i1.image.size() == 0);
i1 = blurhash::decode(" GF5]+Yk^6#M@-5c,1J5@[or[Q6.", 360, 200);
CHECK(i1.width == 0);
CHECK(i1.height == 0);
CHECK(i1.image.size() == 0);
}
TEST_CASE("encode")
{
CHECK(blurhash::encode(nullptr, 360, 200, 4, 3) == "");
std::vector<unsigned char> black(360 * 200 * 3, 0);
CHECK(blurhash::encode(black.data(), 0, 200, 4, 3) == "");
CHECK(blurhash::encode(black.data(), 360, 0, 4, 3) == "");
CHECK(blurhash::encode(black.data(), 360, 200, 0, 3) == "");
CHECK(blurhash::encode(black.data(), 360, 200, 4, 0) == "");
CHECK(blurhash::encode(black.data(), 360, 200, 4, 3) == "L00000fQfQfQfQfQfQfQfQfQfQfQ");
}
#endif